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Spotlighting on Objects: Prior Knowledge-Driven
Maritime Image Dehazing and Object
Detection Framework
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and Wenwu Wang

Abstract—Maritime environments often face visibility chal-
lenges due to haze which significantly impacts detection models.
However, existing maritime object detection algorithms often ne-
glect haze conditions or the unique characteristics of the maritime
environment, resulting in decreased effectiveness in hazy weather.
In this article, we propose a prior knowledge-driven maritime
image dehazing and object detection framework (MDD), which
consists of a detection network and a restoration network. Lever-
aging the characteristics of the highlighted ships in the inverted
dark channel prior (IDCP), the detection network incorporates a
prior subnetwork to learn ship-related features, which are sub-
sequently merged into the backbone network through an IDCP
cross-attention module. During training, the restoration network
is integrated to improve the clarity of the features learned by the
detection network. In addition, a ship-haze enrichment strategy is
implemented to emphasize ship regions in the training samples,
along with a ship-aware reconstruction loss to enhance the net-
work’s ability to learn dehazed features. Moreover, we establish a
maritime object recognition with haze levels (MORHL) data set
to evaluate object detector performance in maritime hazy condi-
tions. It includes 13 280 annotated images across six categories:
cargo ship, container ship, fishing boat, passenger ship, island, and
buoy, with haze levels categorized as light, medium, and heavy.
Comprehensive experiments on the MORHL and SMD data sets
demonstrate that the proposed MDD framework outperforms the
state-of-the-art detectors and various combinations of dehazing
and detection methods.

Index Terms—Image dehazing, inverted dark channel prior
(IDCP), maritime object detection, maritime object recognition
with haze levels (MORHL) data set.

I. INTRODUCTION

AZY conditions prevalent in maritime environments of-
ten result in restricted visibility and diminished contrast
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in images. This deterioration in image quality poses signif-
icant challenges to the accurate detection and recognition of
objects [1], including ships, buoys, and other maritime entities.
Such compromised visibility elevates the risk of maritime inci-
dents, such as collisions and grounding incidents. Accordingly,
there is a compelling demand to explore image dehazing algo-
rithms and object detection algorithms tailored to vision-based
applications in maritime scenes.

Object detection algorithms currently include single-stage
detectors, such as the YOLO series [2], [3], which divide images
into grids and predict object classes and bounding boxes directly,
and two-stage detectors, such as Faster R-convolutional neural
network (R-CNN) [4], which uses a region proposal network
(RPN) to generate candidate boxes before classifying and re-
fining them. Other notable models are single shot multibox
detector [5], RetinaNet [6], and Mask R-CNN [7], each with its
strengths and applicability in various scenarios, such as real-time
performance (YOLO), high accuracy (Faster R-CNN), and in-
stance segmentation capabilities (Mask R-CNN). Recently, sev-
eral improved networks have been explored to address the chal-
lenge of ship detection, such as sequential three-way decisions
and multi-granularity detector (S3MDet) [8], cross-level feature
refinement detector (CLFR-Det) [9], and rotational YOLO based
model (RYM) [10]. However, these networks have not been
optimized for hazy conditions, making it difficult to accurately
identify and localize objects in hazy weather. In contrast, our
approach integrates prior knowledge into the detection network,
enabling the model to more effectively distinguish ships from
the hazy background, thus improving both detection and local-
ization under severe weather conditions.

Although there exist numerous efficient image dehazing net-
works, suchas MSBDN [11] and FFANet [12], they are primarily
optimized for terrestrial scenarios. Consequently, these dehazing
methods do not effectively address the unique characteristics
of maritime environments. Overall, maritime image dehazing
remains relatively unexplored in the current literature. In mar-
itime environments, images often feature extensive sky and sea
areas. While ships are relatively small within these images,
they are central to downstream tasks, such as detection [13]
and tracking [14], [15]. Building upon these observations, we
propose a prior knowledge-driven maritime image dehazing and
object detection framework (MDD) which consists of a detection
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network and a restoration network for effective maritime object
detection under hazy conditions.

Specifically, we develop an inverted dark channel prior
(IDCP) that could accentuate ships within maritime images. In
dark channels [16], the sky and sea surface are typically brighter
than ships due to their pixel values being similar to air light.
Utilizing this characteristic, ships are highlighted when the dark
channel is inverted. We further utilize min—-max normalization
to magnify this effect. This procedure preserves the darker areas
of the sky and sea surface while enhancing the brightness of
objects on the sea.

In light of the characteristics of the highlighted ships in the
IDCP, we establish a prior subnetwork within the detection
network. The backbone network processes the hazy image to
extract contextual and texture features, while the prior subnet-
work handles the corresponding inverted dark channel to learn
ship-related features. To effectively integrate structural and prior
knowledge features, we propose an IDCP cross-attention mod-
ule that facilitates multiscale learning and information fusion.

During training, we incorporate an auxiliary restoration net-
work to improve the clarity of the features learned by the
detection network. The restoration network reconstructs the
extracted features into haze-free images and is optimized by im-
age reconstruction loss functions. By integrating the restoration
network, the detection network is effectively guided to produce
dehazed features, thereby improving its capability to accurately
detect objects under hazy conditions. This approach ensures that
the detection network not only focuses on object identification
but also learns to produce features that are robust against the
distortions caused by haze.

Furthermore, we implement a ship-haze enrichment strategy
(SHES) during training to strengthen the network’s capacity
for extracting dehazed features. This strategy introduces thick
haze specifically to ship areas, thereby directing the model’s
attention towards effectively removing haze from these regions.
In addition, we design a ship-aware reconstruction loss function
to prioritize ship-related features while minimizing the influence
of features from the sky and sea surface. This loss function aims
to promote the network in both dehazing and detection tasks by
effectively preserving ship-related information in the dehazed
images.

Maritime environments often face visibility challenges due
to haze, which can obscure objects and substantially hinder
the effectiveness of object detection models. To assess the
performance improvement of object detection networks before
and after image dehazing in maritime scenarios, we propose a
maritime object recognition with haze levels (MORHL) data
set. This data set comprises 13 280 images divided into training
and test sets, encompassing six categories: cargo ship, container
ship, fishing boat, passenger ship, island, and buoy, with light,
medium, and heavy haze levels.

In brief, this work presents the following contributions.

1) A prior knowledge-driven MDD is developed. The MDD
utilizes a prior subnetwork to learn ship-related features
from the IDCP, which are then integrated into the back-
bone network via an IDCP cross-attention module. Be-
sides, an additional restoration network is incorporated to
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enable the detection network to extract dehazed features,
thus facilitating efficient object detection in maritime haze
environments.

2) By leveraging the IDCP, we implement a SHES to intro-
duce additional thick haze to ship regions in the training
samples. This approach is complemented by a ship-aware
reconstruction loss that enhances the network’s capacity
to learn dehazed features effectively.

3) We constructa MORHL data set to assess the performance
improvement of object detectors before and after image
dehazing in maritime scenarios. This data set comprises
13280 annotated images across six categories: cargo ship,
container ship, fishing boat, passenger ship, island, and
buoy, encompassing light, medium, and heavy haze con-
ditions.

The rest of this article is organized as follows. Section II
presents an overview of relevant studies, encompassing image
dehazing, object detection, and detection with restoration al-
gorithms. Section III details the proposed MDD framework.
Section IV presents a thorough analysis of experimental results,
benchmarking our approach against state-of-the-art methods.
Finally, Section V concludes this article.

II. RELATED WORK

This section offers a brief summary of single image dehazing
algorithms, object detection approaches, and detection with
restoration methods.

A. Image Dehazing

Maritime image analysis [17] and enhancement tech-
niques [18], [19] play a crucial role in supporting visual percep-
tion tasks in maritime scenes. These advanced methods not only
enhance image interpretability but also facilitate robust feature
extraction in complex maritime environments. Among these
methods, image dehazing algorithms can significantly improve
the clarity of maritime images under hazy weather conditions.
Based on the atmospheric scattering model (ASM) [20], a hazy
image can be expressed as follows:

I(z) = J(x)t(x) + A(1 — t(z)). (1)

Here, 2 denotes the pixel position, I(x) refers to degraded hazy
image, and J(z) is haze-free image. A and ¢(x) are the air light
and the transmission. There are two main types of dehazing
approaches: prior-based and learning-based. The prior-based
image dehazing approache utilize statistical properties of natural
images to predict transmission and air light. He et al. [16]
suggested that a minimum of one channel in the RGB space
tends to approach zero in a fog-free image. While these ap-
proaches demonstrate efficacy in image dehazing, they might
struggle in specific scenarios. For example, the dark channel
prior (DCP) [16] often encounters challenges with the sky or
white buildings.

As CNNs have advanced, many researchers have developed
learning-based dehazing algorithms. Cai et al. [21] exploited a
network for estimating medium transmission in hazy images,
featuring a specialized CNN architecture with Maxout units for
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feature extraction and a novel activation function, BReLU, to
enhance image quality. Ren et al. [22] introduced a multiscale
neural network, which models the connection between hazy
input and their transmissions.

Although supervised learning methods perform well on syn-
thetic images, they may struggle with real-world ones due to
domain shifts. Hence, Li et al. [23] devised a semi-supervised
learning approach utilizing a deep CNN with distinct supervised
and unsupervised branches. These branches employ varied loss
functions to optimize the network across synthetic and real-
world data sets. Shao et al. [24] explored a domain adaptation ap-
proach employing image translation and two dehazing modules.
Initially, a bidirectional translation subnetwork aligns synthetic
and real domains. Subsequently, two dehazing subnetworks are
trained using translated images under a consistency constraint,
enhancing domain adaptability with real hazy images.

Recently, Zheng et al. [25] introduced a variant of Cycle-
GAN for overwater image dehazing. However, it only replaces
land hazy images with overwater ones during training, leading
to limited dehazing results. In contrast, our approach focuses
on maritime image features, ensuring dehazing is suitable for
detection tasks.

B. Object Detection

Object detection is crucial in scene recognition and mod-
eling [26], [27], identifying targets like people, vehicles, and
objects in complex scenes. Single-stage methods concurrently
generate region proposals and object classification through uni-
fied encoding. YOLO [28] partitions input images into grid cells,
predicting multiple bounding boxes relative to each cell’s center.
Nevertheless, it demonstrates reduced detection accuracy for
small or occluded objects, constrained by the maximum number
of objects per cell. In subsequent versions [2], [3], a sequence
of enhancements has been introduced to tackle these concerns.

In two-stage methods, the process begins with proposal se-
lection, followed by the classification and regression of region
proposals. For instance, Faster R-CNN [4] introduces a RPN
within the network architecture, automatically generating pro-
posals through the RPN. Multistage methods take the two-stage
approach further by repeating the steps multiple times. For
example, Cascade R-CNN [29] iterates on proposal generation,
classification, and regression, with the goal of progressively
refining the region proposals.

The incorporation of anchors has demonstrated efficacy in
improving object detectors. Nonetheless, achieving optimal cov-
erage of ground truth labels needs a significant amount of
meticulously configured anchors [30]. To address this chal-
lenge, anchor-free methods have been proposed as alternatives.
CornerNet [31] detects objects by predicting their keypoints
(corners) and forming bounding boxes based on these key points.
CenterNet [32] directly estimates the central point of objects and
regresses the bounding box size around that center. It achieves
accurate detection by focusing on the center keypoint rather
than traditional anchor-based methods. Taking advantage of
the potent feature extraction capabilities of Transformer, Vision
Transformer [33] integrates the Transformer architecture into
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computer vision tasks. Extending this, DEtection Transformer
(DETR) [34] devises an encoder—decoder framework tailored for
object detection. However, DETR involves high computational
cost, which may restrict its practical applicability in computation
resource limited applications. To this end, RT-DETR [35] is
proposed to achieve a tradeoff in both speed and accuracy.

In summary, single-stage methods generally offer faster per-
formance in object detection, but they tend to have slightly
weaker performance compared to detectors based on region
proposals.

C. Detection With Restoration

In degraded environments, it is generally recognized that
restoration techniques can enhance images, leading to better
performance in recognition tasks. Yim and Sohn [36] inves-
tigated how image quality affects convolutional networks in
image classification and proposes a dual-channel architecture to
address these issues. Dai et al. [37] presented a comprehensive
study on the utility of image super-resolution (ISR) for various
vision tasks beyond perceptual evaluation, evaluating six ISR
methods across four vision applications.

Some restoration and detection networks are trained together
on degraded images. Liu et al. [38] explored a unified framework
that combines image denoising with high-level vision tasks,
showcasing the benefits of semantic guidance for improved
visual quality and robustness across various vision tasks with-
out fine-tuning. Huang et al. [39] developed DSNet, a novel
dual-subnet network for object detection in foggy conditions.
DSNet attains significant performance improvements by jointly
optimizing these tasks, demonstrating superior accuracy while
maintaining high speed. Different from above, Liu et al. [40]
optimized the entire network with only a detection loss. Al-
though the approaches mentioned above yield promising results
for high-level tasks, the domain of maritime image detection
coupled with restoration remains relatively underexplored. The
objective of our MDD framework presented in this article is to
address this gap for achieving efficient object detection perfor-
mance in maritime hazy scenes.

III. PROPOSED METHOD

This section introduces our prior knowledge-driven MDD
framework. Initially, we provide an outline of our approach.
Following this, we elaborate on the detection network and
restoration network. Then, we delve into the specifics of the
prior knowledge. Subsequently, we discuss the details of the
loss functions utilized for network training. Finally, we provide
an explanation of the proposed MORHL data set.

A. Method Overview

The proposed MDD framework is presented in Fig. 1. Initially,
given a haze-free maritime image, we compute its inverted dark
channel to highlight ship regions. Utilizing both the clean image
and its corresponding inverted dark channel, we then apply the
SHES to generate a hazy image, followed by calculating the
inverted dark channel for the hazy image. Subsequently, the hazy

Authorized licensed use limited to: University of Surrey. Downloaded on January 04,2026 at 22:30:42 UTC from IEEE Xplore. Restrictions apply.



MO et al.: SPOTLIGHTING ON OBJECTS: PRIOR KNOWLEDGE-DRIVEN MARITIME IMAGE DEHAZING AND OBJECT DETECTION FRAMEWORK

Ship-aware
Reconstruction Loss

Y Clean Image

Fig. 1. Flowchart of the proposed prior knowledge-driven MDD.

image is processed by the backbone network to extract con-
textual features, while the prior subnetwork handles the prior
image to extract ship-related features. Finally, these features are
integrated using a cross-attention module for object detection.

During the training phase, we also develop an auxiliary
restoration network which is designed to improve the clar-
ity of the features extracted by the detection network. This
restoration network utilizes features from the backbone network
to reconstruct haze-free images. By leveraging the ship-aware
reconstruction loss, we improve the detection network’s capacity
to produce clearer, dehazed features, thereby improving its per-
formance in detecting objects under hazy conditions. It is crucial
to emphasize that the restoration network is utilized solely during
the training stage.

B. Detection Network

1) Network Architecture: The detection network, as depicted
in Fig. 2, integrates an enhanced YOLOvVS8 [41] architecture
with a prior subnetwork. Specifically, the YOLOvS uses the
CSPDarknet53 backbone and features the path aggregation net-
work for its neck. The head generates predictions by computing
bounding box coordinates, object scores, and class probabilities.
To integrate ship-related features from the prior subnetwork
with the backbone network, we designed IDCP cross-attention
modules within the backbone network. This design enhances
multiscale learning and facilitates effective information fusion
within the backbone network.

The prior subnetwork contains five downsampling stages,
each containing a 3 X 3 convolution with a stride of 2,
followed by a depthwise separable convolution (DSC) [42].
This integration of DSC enables the network to be lightweight
while maintaining its representational capacity. In the final

Training Phase

Dehazed Image

Generate |
Ship-Haze Enrichment | hazy image |
Strategy
A

Inverted Dark Channel

1981

Restoration Network

A

Feature flow I

Detection Phase

Backbone+Neck+Head

Hazy Image

Feature flow

Prior Subnetwork ‘

three downsampling stages, the output features from each
depth-separable convolution are concurrently fed into the
cross-attention module within the backbone network, thereby
supplying ship-related features derived from the prior map.

2) IDCP Cross-Attention: Toimprove the model’s capability
to capture and utilize contextual information from both input
images and the inverted dark channel, we design a collaborative
fusion mechanism called IDCP cross-attention. Fig. 2 illustrates
the basic idea behind our innovative IDCP cross-attention mod-
ule. The fusion process integrates the structural information
token from one branch with the prior information tokens from
another branch. In this process, the structural information token
within its respective branch has already acquired abstract infor-
mation from the input image, interacting with the prior tokens at
the other branch helps to learn information at a different scale.

Specifically, the structural and prior features from the previous
layer u € RE*H>XW 4y ¢ REXH*W are first transformed into a
query (Q) and key vector (K)

Q = o(Avg(Convyx (u,w)))
K = o(Avg(Convyy (v, w)))

@)
3

where Conv 1 denotes convolution operation with kernel size
1, w is convolution kernel, Avg and o represent average pooling
and ReLU activation.

After obtaining the query and key vector, we calculate the
attention vector and applied to the value (V)

V = DSC(u,w)
O =V +V x Softmax(Conv 1 (cat(Q, K)))

“
(&)

where DSC denotes DSC, cat denotes concatenation operation,
and O is the output feature.
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Fig. 2. Architecture of the proposed MDD framework, where “DSC” denotes depthwise separable convolution and “CA” represents the IDCP

cross-attention module.

C. Restoration Network

In our MDD framework, the restoration network focuses
on generating haze-free images and facilitating the backbone
network to learn dehazed features, thereby improving detection
accuracy under hazy conditions. To achieve this, we have imple-
mented a decoder-like network that incorporates five upsampling
stages, as shown in Fig. 2. The first four upsampling stages
consist of a deconvolutional layer followed by a DSC. The final
upsampling stage incorporates an additional 7 x 7 convolution
layer, which plays a critical role in generating the final dehazed
image.

It is crucial to emphasize that the restoration network is
utilized solely during the training stage. Its role is to assist the
backbone network in acquiring effective representations for de-
hazing. Once the model has been trained, the restoration network
is not required for inference, as the backbone network is capable
of leveraging the learned dehazed features for object detection
in real-world scenarios. This design ensures that the model can
perform efficiently and effectively during deployment.

D. Prior Knowledge

1) Inverted Dark Channel Prior: Marine scenes often feature
expansive sky and sea areas. When objects in the maritime scene
closely resemble atmospheric light, as He et al. [16] claimed,
the DCP loses its effectiveness, leading to brighter sky and sea
regions in the dark channel. However, this brightness contrast
can be leveraged to highlight objects (such as ships and islands)
by inverting the dark channel in maritime scenes. As depicted in
Fig. 3, the inverted dark channel can effectively emphasize the
contrast between the background and the objects.

2) Ship-Haze Enrichment Strategy: Haze that obscures ships
considerably hinders model performance in object detection and
tracking tasks. To simulate this effect, we introduce thick haze
into the ship regions of the training images, named SHES. If
the network fails to effectively restore and detect the ships,
it results in higher image reconstruction and detection loss
values. Consequently, this strategy drives the model to priori-
tize effective dehazing and accurate detection of these critical
regions.
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Fig. 3. Comparison of the (a) input image, (b) dark channel, and (c) inverted
dark channel. To illustrate the distinctions more effectively, we utilize heatmaps
for visualization.

Clean Depth Ship-aware Hazy
Image Estimator Depth Map 07— 10 Image
R
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Fig. 4. Flowchart of the SHES.

Equation (1) illustrates the imaging model of hazy degraded
images, where () = e #%*) depends on scene depth d(z)
and haze density coefficient 5. Regions with a greater depth of
field will result in more severe haze. Since IDCP can effectively
highlight ships, we utilize it to deepen the ship area and generate
the hazy image, as illustrated in Fig. 4. We overlay the inverted
dark channel Jig. onto the depth map to enhance the depth of
the ship region. Because of the greater depth of field, the haze
in the ship area will be more pronounced when generating hazy
image using ASM. Here, v denotes a weight parameter, fixed
at 0.2 in our experimental configuration. In addition, the values
of A and /3 vary within the ranges of 0.7 to 1.0 and 0.5 to 2.0,
respectively, to generate distinct haze concentrations.

3) Ship-Aware Reconstruction Loss: To sharpen the net-
work’s attention on ship areas in maritime images, we introduce a
novel loss function named the “ship-aware reconstruction loss.”
It strengthens the network’s ability to accurately recover and
emphasize ship-related features during image dehazing. This
loss function is expressed as

Lea = [[(G(I(2)) — J(2)) Jsiac| (6)

where I(z) and J(z) represent for input hazy image and recov-
ered clean image, G denotes dehazing net, Jgiq. is smoothed
inverted dark channel of J(x), and || - ||; stands for L; norm.
Fig. 5 illustrates the calculation process of ship-aware recovery
loss. In Lg,, the emphasis lies in augmenting the loss associated
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Fig. 5. Flowchart of the ship-aware recovery loss calculation.

with ship-related features while concurrently reducing the loss
attributed to the sky and sea surface. As a result, the ship-aware
recovery loss aims to improve the model’s effectiveness in both
dehazing and detection by effectively addressing and preserving
the ship-related information in the dehazed images.

E. Loss Functions

The MDD loss function comprises three components: the
detection loss Lget, the generative adversarial network (GAN)
loss L, and the ship-aware recovery loss L, which is detailed
earlier.

1) GAN Loss: The GAN loss is utilized to update both the
generators and discriminators in an adversarial way. It is defined
as

Lo =E[(D(J(x)) - V] + EID(GI()*] (D

where J () is the clean image, I (x) is the hazy image, G denotes
the generator, D denotes the discriminator which distinguishes
between translated images G(I(z)) and real images .J(x). In
the MDD framework, the backbone and the restoration network
collaboratively play the role of the generator to produce haze-
free images.

2) Detection Loss: Detection loss comprises multiple com-
ponents that work collaboratively to boost the accuracy of object
localization and classification., which can be expressed as

Ldet = Lconf + Lreg + Lcls- (8)

The confidence loss L..,s measures how accurately the model
predicts the presence of an object within a bounding box. The re-
gression loss L., minimizes location errors between predicted
and actual boxes, and the classification loss L. checks for
discrepancies in class probabilities and labels.

Specifically, the smooth /; loss [43] is employed as the re-
gression loss

0.522,
Lsmooth L1 (‘T) = {;(;| — 057

The term x denotes the distance between the predicted and
ground truth boxes, with the softmax loss serving as the con-
fidence metric

if 2] <1
otherwise.

©)

Leont = — Z preilog(gti) (10)
1=1
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(@)

Fig. 6.

where pre; and gt; represent the ith element of the predicted
and ground truth class vectors. Finally, the cross-entropy loss is
adopted as the classification loss

| N
Las =~ Z} yilog(pi) (an
where p; denotes the estimated probability and y; is the ground
truth probability for class ¢, with IV denoting the total number
of classes.
Overall loss function: By aggregating all the previously men-
tioned losses, the total loss function is defined as

L =xLg + AaLdet + A3Lsa (12)

where A; balances the impact of individual losses. Our practi-
cal experiments demonstrate that the ship-aware recovery loss
substantially enhances the dehazing performance through fine-
tuning. Consequently, we establish the hyperparameters as fol-
lows to ensure stable training: setting A1 to 0.5, which contributes
to training stability, while configuring Ao as 0.1 and A3 as 10 to
optimize the impact of various loss components.

F. MORHL Data Set

The maritime environment is known for its complexity, par-
ticularly due to hazy weather conditions that present significant
challenges to imaging quality when detecting objects. However,
there is a notable lack of maritime data sets that are designed
to assess the impact of haze and dehazing algorithms on object
detection networks. Therefore, to thoroughly assess the perfor-
mance of object detectors under haze conditions, we propose a
MORHL data set. Our data collection process involved manual
video recording and the use of search engines to obtain maritime
images, ship videos, and ship images captured under various
haze conditions. In addition, we integrated 7000 images from
the SeaShips data set [44] and included the hazy subset of the
Singapore Maritime Data Set (SMD) [45], totaling 692 images,
into our MORHL data set.

Specifically, the MORHL data set is composed of 13 280
images split into a training set and a test set, with no duplication

4 Hgz11 k11

(b) (©) (d

Example images of the MORHL data set with different haze conditions. (a) Haze-free. (b) Light haze. (c) Medium haze. (d) Heavy haze.

of images within each set. The training set comprises haze-free
and hazy images, while the test set includes images depicting
three haze levels: light, medium, and heavy haziness. This data
set encompasses six distinct categories: cargo ship, container
ship, fishing boat, passenger ship, island, and buoy. Figs. 6 and
7 provide visual examples of images from the data set depicting
various haze conditions and distinct category labels. In addition,
Table I offers statistical information into the MORHL data set.

IV. EXPERIMENTS

A. Implementation Details

Our prior knowledge-driven MDD is developed using Py-
Torch and trained on a Linux workstation with an Nvidia
GTX 4090 GPU. For synthesizing hazy images, we employ
MIMNet [46] as the depth estimation network. During training,
samples are resized to 512 x 512, and random horizontal flipping
is applied for data augmentation. The training employs the
ADAM optimizer with a learning rate set at 0.0001, a batch size
of 4, and a cosine annealing schedule that reduces the learning
rate to zero after 100 epochs.

B. Data Sets and Metrics

In this article, we train and evaluate our MDD framework
using the proposed MORHL data set and the Singapore Maritime
Data Set (SMD) [45]. Detailed information about the MORHL
data set can be found in Section III-F. For the SMD data set, we
employed the version by Moosbauer et al. [47], we then devide
the SMD data set into a training set of 9200 haze-free images
and a test set of 692 hazy images.

We select mean Average Precision (mAP) as our evaluation
metric. It is calculated across multiple Intersection over Union
(IoU) thresholds, ranging from 0.5 to 0.95 in 0.05 increments,
providing a comprehensive evaluation of an object detector’s
performance across varying levels of overlap between the pre-
dicted and ground truth bounding boxes.
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Fig. 7. Example images and annotations from the MORHL data set with different category labels. The ground truth bounding boxes are represented by colored
rectangles: red for cargo ships, orange for container ships, blue for fishing boats, cyan for passenger ships, green for islands, and yellow for buoys. Please zoom in

on the image for a better visualization.

TABLE I
SUMMARY OF MORHL DATA SET

Haze level Images Cargo ship Container ship Fishing boat  Passenger ship Island buoy

. Clean 5439 17 654 1195 12 573 844 1638 4396
Training
Hazy 1133 1143 133 1010 157 16 156
Test_1 Light haze 1196 1082 195 355 61 20 298
Test_m Medium haze 2512 24 548 12 0 0 0 12
Test_h Heavy haze 3000 17 790 4009 0 0 0 0
Total c+l+m+h 13 280 62217 5544 13938 1062 1674 4862
The symbols “c,” “,” “m,” and “h” denote different haze levels: clean, light, medium, and heavy, respectively.
TABLE II

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART DETECTION METHODS ON SMD AND MORHL DATA SETS

MORHL (mAP)
Light haze Medium haze Heavy haze

Methods #Params(M) Latency(ms) SMD(mAP)

YOLOVS-L 46 15.9 385 455 423 30.2
YOLOVS-L 43 229 393 46.2 429 29.8
YOLOv10-X 30 19.1 39.7 47.0 43.4 303
RTDETR-L 42 23.7 41.5% 48.5% 44.12 32.12
MDD 49 24.8 43.1! 50.1! 46.3! 34.6!
C. Performance Evaluation YOLOVS [41], YOLOVIO [49], and the transformer-based

1) Comparison With Different Object Detectors: We conduct ~ detector RT-DETR [35]. Specifically, we utilize YOLOVS-L,
experiments and compare the results with various object detec- YOLOV8-L, and RT-DETR-L models with a similar num-

tion methods, including the one-stage detector YOLOVS [48], ber of parameters for performance comparison. YOLOvV5 and
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: Container ship

Fig. 8.

:: Cargo ship

Qualitative comparison of different detection methods on the MORHL test sets. (a) YOLOVS. (b) YOLOVS. (¢) YOLOv10. (d) RT-DETR. (e) MDD.

TABLE III
PERFORMANCE COMPARISON ON THE SMD AND MORHL DATA SETS WITH INDEPENDENTLY USED DEHAZING AND DETECTION METHODS

Network Dataset
MORHL (mAP)
Dehazing Detection SMD (mAP)
Light haze  Medium haze Heavy haze

AOD YOLOVS8-L 39.7 474 43.1 30.5
MSBDN YOLOV8-L 40.9 48.1 43.6 315
4KDehazing  YOLOVS-L 39.5 479 434 314
SLAD YOLOV8-L 40.3 46.3 429 31.0
RIDCP YOLOvV8-L 39.1 45.9 42.5 30.4
DEANet  YOLOVS-L 41.5? 48.42 4392 3172
MDD 43.1! 50.1! 46.3! 34.6!

The bold values indicate the top two rankings for each metric.

YOLOVS are chosen as baselines due to their established effec-
tiveness and real-time performance in a wide range of object
detection tasks. In addition, we include the YOLOv10, known
for its lightweight design and efficiency, and select its largest
variant, YOLOV10-X, to ensure a fair comparison. RT-DETR is
also incorporated as it represents a real-time transformer-based
detector, combining the advantages of transformer architectures
with low latency.

The quantitative performance comparison of these models
with our MDD framework in hazy maritime scenarios for
ship detection is presented in Table II, where the bold values
indicate the top two rankings for each metric. In this table,
“Latency” refers to the average time required to process a
single image, including preprocessing, forward propagation, and
postprocessing. The results show that MDD achieved the highest
mAP values across the SMD and MORHL test sets, under light,

medium, and heavy haze conditions. Specifically, MDD outper-
formed the second-best method by 1.6%, 2.2%, and 2.5% on the
light, medium, and heavy haze test sets, respectively. This con-
sistent superiority emphasizes the effectiveness of MDD in di-
verse haze scenarios. Notably, the most significant improvement
was observed on the heavy haze test set, further demonstrating
MDD’s robust ability to accurately detect ships even in dense
haze conditions. Unlike other methods that lack haze-specific
optimization, our MDD framework leverages IDCP knowledge
to enhance ship detection in hazy environments. As haze in-
tensity increases, the advantage of our method becomes more
apparent, effectively reducing the haze’s impact on feature ex-
traction and focusing on relevant ship features. Although MDD
exhibits a slight increase in latency, with a 1.1 ms increase over
RT-DETR-L, it achieves a 1.6% improvement on the SMD data
setand a 2.5% improvement on the MORHL heavy haze test set.
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(e) SLAD. (f) RIDCP. (g) DEANet. (h) MDD.

A qualitative comparison of various object detection methods
evaluated on the MORHL test sets is illustrated in Fig. 8.
The comparison highlights that the MDD framework consis-
tently outperforms other models across various challenging
conditions. From the third set of comparisons, it can be ob-
served that MDD is able to accurately detect small distant
ships covered by haze. Although RT-DETR also demonstrates
good detection accuracy, it encounters the issue of duplicate

1987

(CY

(8

:: Cargo ship

Qualitative comparison on the MORHL data set with independently used dehazing and detection methods. (a) Hazy. (b) AOD. (c) MSBDN. (d) 4KDehazing.

detections. Detecting occluded targets is challenging due to
partial obstruction, and haze further complicates this by ob-
scuring key features. However, our MDD framework overcomes
these issues by leveraging prior knowledge-driven feature learn-
ing and the IDCP cross-attention module, which enhances the
model’s ability to focus on ship regions even in the presence of
occlusion and haze. In addition, the restoration network, along
with the ship-aware reconstruction loss, enables the model to
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TABLE IV
ABLATION STUDY OF MDD WITH DIFFERENT SETTINGS ON SMD AND MORHL DATA SETS

Setting 1 2 3 4 5 6
SHES v v v v
Lsa v v
Prior-subnetwork + CA v v v
Restoration Network v v
mAPsnvp (%) 393 395 415 423 426> 4311
Light haze | 462 469 479 489 49.3 50.1!
mAPyoREL(%)  Medium haze | 429 433 4477 455 45.62  46.3!
Heavy haze | 29.8 30.1 32.0 33.1 33.8% 34.6!

The bold values indicate the top two rankings for each metric.

better learn ship features by enhancing their clarity, thereby
improving detection performance in occlusion conditions. Over-
all, MDD demonstrates exceptional performance in detecting
ships amidst occlusion and heavy haze, as well as effectively
identifying small target ships, which are typically difficult to
detect.

2) Comparison With Dehazing Combined Detection Meth-
ods: We also compared our MDD with a conventional approach
where dehazing is performed prior to object detection. In this
comparison, a dehazing network was used as a preprocessing
step, followed by the YOLOvVS-L detection network. This al-
lowed us to assess how well our integrated framework performs
relative to a traditional two-step process involving separate
dehazing and detection stages. We conduct the experiments
on MORHL and SMD data sets and make comparison with
diverse image dehazing methods including AOD [50], MS-
BDN [11], 4KDehazing [51], SLAD [52], RIDCP [53], and
DEANet [54].

Table III and Fig. 9 provide a comprehensive evaluation of our
MDD framework against traditional approaches that first apply
dehazing followed by object detection. The quantitative results
in Table III indicate that, while the application of a dehazing
network as a preprocessing step results in enhanced detection
performance, there remains a significant performance gap when
compared to our integrated MDD framework. Specifically, while
these traditional dehazing methods improve the overall visual
quality of the images by removing haze, they primarily focus
on enhancing image clarity without considering the impact of
haze removal on the feature representation required for accurate
object detection. As a result, although the haze is reduced,
these methods fail to optimize the detection network’s ability
to extract relevant features for better localization and classifi-
cation. In contrast, our MDD framework integrates dehazing
with detection, allowing the network to jointly learn both tasks,
which leads to a more effective feature extraction process. This
holistic approach ensures that the improvements in image quality
directly translate into better detection performance, resulting in
mAP improvements of 1.6%, 1.7%, 2.4%, and 2.9% on the SMD,
light haze, medium haze, and heavy haze test sets of the MORHL
data sets, respectively.

Fig. 9 complements these quantitative findings with quali-
tative results, highlighting that our MDD framework provides
superior performance in real-world scenarios. The visual com-
parisons demonstrate that our framework improves detection
accuracy in challenging conditions, such as occlusions and small
target ships under haze. The combined evidence from both quan-
titative and qualitative analyses underscores the effectiveness of
our unified approach, reinforcing that our integrated dehazing
and detection framework is highly effective for maritime object
detection in hazy conditions.

D. Model Analyses

1) Ablation Study: This section evaluates the performance
of our MDD framework across various configurations. Table IV
and Fig. 10illustrate the impact of 1) the SHES, 2) the ship-aware
reconstruction loss (Lg, ), 3) the combination of the prior subnet-
work and IDCP cross-attention, and 4) the restoration network
on detection performance.

From Table 1V, it can be observed that when the network is
trained using the SHES on hazy images, the mAP shows a slight
improvement compared to the baseline, with a 0.2% increase
on the SMD data set. In contrast, when the network is trained
using the combination of the prior subnetwork and IDCP cross-
attention on clear images, a more substantial performance gain is
achieved. Specifically, compared to Setting 2, the network shows
a2.0% improvement on the SMD data set, and increases of 1.0%,
1.4%, and 1.9% for light, medium, and heavy haze conditions,
respectively, on the MORHL data set. These results demonstrate
that even when trained on clear images, the network can still
effectively capture ship target features in hazy environments by
leveraging prior knowledge.

When the SHES, ship-aware reconstruction loss, and restora-
tion network are employed, the network benefits from the com-
bined contribution of these components. The SHES helps to sim-
ulate hazy conditions more effectively, improving the model’s
robustness in hazy environments. The ship-aware reconstruction
loss enhances the network’s ability to preserve and focus on
ship-related features during the restoration process. Meanwhile,
the restoration network further refines the image quality by
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mitigating haze effects, ensuring better feature visibility. As a
result, the network achieves the second-best performance across
the four test sets, demonstrating the synergistic effectiveness of
these components in improving overall performance.

The qualitative comparison of MDD results under different
configurations is presented in Fig. 10. It can be observed that
when all components are applied, the network achieves the best
detection performance. In contrast, networks using alternative
configurations encounter issues such as false detections and
duplicate detections. These findings emphasize the critical role
that each component plays in improving detection accuracy
and minimizing errors, highlighting the effectiveness of the full
configuration in optimizing performance.

In summary, while each component—the prior subnetwork
and IDCP cross-attention, the SHES, the ship-aware reconstruc-
tion loss, and the restoration network—individually contributes
to enhancing object detection, their combined application yields
the best results. This phenomenon demonstrates that the syn-
ergy between components significantly boosts overall detection
performance, confirming the efficacy of our approach in address-
ing challenging maritime hazy conditions.

2) Effectiveness of Different Losses: To assess the impact
of different weights for the ship-aware recovery loss on the
network’s detection performance, we conducted a series of
ablation experiments. The results presented in Table V show
that the network achieves the best detection accuracy when the
weight is set to 10, with performance declining when the weight
is either smaller or larger than this value. Specifically, when

1989

(CargoCargo ship

Cargo ship.

(© ®

Qualitative comparison of MDD detection results under different settings. (a) Setting 1. (b) Setting 2. (c) Setting 3. (d) Setting 4. (e) Setting 5.

TABLE V
ABLATION STUDY ON THE EFFECT OF DIFFERENT WEIGHTS FOR THE
SHIP-AWARE RECOVERY LOSS

Weight 1 5 10 15 20

mAPsyD (%) 394 425 431 419 396

Light haze 47.0 492 501 483 472

mAPyorgL(%) Medium haze 435 457 463 446 437
Heavy haze 321 338 346 330 325

The bold values indicate the top two rankings for each metric.

the weight is smaller than the optimal value, the effect of the
ship-aware recovery loss on the network weakens, resulting in
the network’s failure to effectively capture key ship features.
On the other hand, when the weight exceeds 10, the network
tends to prioritize enhancing the visual quality of the recovered
image over detection accuracy. These findings underscore the
importance of carefully balancing the weight of the ship-aware
recovery loss to ensure that the network can both recover the
visual quality of the image and maintain strong detection capa-
bilities.

3) Limitations: Like previous methods, the proposed ap-
proach has certain limitations. When certain areas in the image
tend toward white (e.g., ocean waves), the inverted dark channel
tends to suppress these areas, as demonstrated in Fig. 11. This
happens because white regions typically have high pixel values
across all three channels in the input image, causing them to
appear bright in the dark channel [16]. Upon inverting the dark

Authorized licensed use limited to: University of Surrey. Downloaded on January 04,2026 at 22:30:42 UTC from IEEE Xplore. Restrictions apply.



1990

(a)

Fig. 11.
(b) IDC. (c¢) Detection result.

channel, these regions are represented as dark. Consequently,
when ships are partially covered by ocean waves, these regions
are also suppressed in the IDC due to their high pixel values
and further impede the network’s ability to extract features from
these areas, leading to missed detections, as shown in Fig. 11(c).
This limitation highlights the need for further refinement to more
effectively handle bright regions and ship features obscured by
waves in future work.

V. CONCLUSION

This article has presented a prior knowledge-driven MDD,
which comprises both a detection network and a restoration
network. To address the specific challenges of maritime sce-
narios, we introduced an IDCP designed to highlight the ships
in maritime images. The detection network incorporates a prior
subnetwork: the backbone processes hazy input images, while
the prior subnetwork handles the corresponding inverted dark
channels. In addition, we developed a cross-attention module
within the backbone network to integrate abstract information
from both sources. During training, the restoration network is
incorporated to improve the clarity of the features extracted
by the object detection network. Furthermore, a ship-haze en-
richment strategy and ship-aware reconstruction loss are im-
plemented to ensure that the network focuses on ship regions
during training. To assess the influence of haze and dehazing
techniques on object detection, we constructed the MORHL
data set. Experimental results across different data sets indicate
that the MDD framework outperforms state-of-the-art object
detectors and dehazing-detection combinations.

In future applications, the MDD framework has the poten-
tial to be adapted for image enhancement and detection tasks
across various adverse weather conditions, including low-light
and rainy environments. This can be achieved by synthesizing
degraded images from diverse environments and employing
joint detection network training. Such extensions will enable
the algorithm to effectively handle real-world scenarios, adapt
to more complex weather conditions, and enhance the robustness
of object detection models.
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